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We developed a general procedure/or calculating two-phase film chemisorption with a first-order chemical 

reaction in the liquid phase in a plane irrigated channel. We obtained numerical solutions for the case of 

practical interest o /a  fast reaction in which the acceleration factor can attain a considerable value. Sufficient 

conditions/or the applicability of this absorption regime were found. 

A theoretical investigation of two-phase chemisorption in a plane-parallel channel constituting a component 

of regular irrigated packings was carried out in [1 ]. For a number of limiting cases analytical solutions were 

obtained that made it possible to find the general laws governing absorption. The present work is a continuation 

of those investigations. We suggest a practically convenient procedure for calculating two-phase chemisorption in 

the presence of an irreversible first-order chemical reaction for arbitrary values of the governing parameters. A film 

of a liquid absorbent (of thickness h) falls down the walls of a rectangular channel (of width 2R) under  gravity in 

contact with a cocurrent gas containing a soluble component A that in the liquid phase enters into an irreversible 
first-order chemical reaction with the formation of a product C: A ~, C. In dimensionless coordinates the problem 

is formulated as [ 1 ] 

OC s O2CI~ OCliq O2Cliq _ O C O2C 
Ug = 2 '  Uliq , = 2 a2Cliq ' Uliq - - - - -~  + a2Cliq ' (1) 

Ox" Oyg Ox OYli q Ox' 0Yli q 

OYliq) S -- ~ [ Oyg)  S 
, Cg  s = Cl iqs ,  = 0 at yg = Yliq = 1, 

s 
(2) 

( 0C~] = 0  at y g = 0 "  OCtiq- OC_o at Yl iq=0 
Oyg) s ' 0Yli q Oy ' 

Cg = 1 , Cli q -- C = 0 at  x'  = x" = 0 ,  (3)  

The x - y  coordinate system was such that y -- 0 at the center of the rectangular channel; y -- R - h and y 

--- R on the falling liquid film surface and on one of the walls, respectively; the equality x - 0 holds at the entrance 

of the gas into the apparatus. The dimensionless coordinates yg, Yliq,, x', and x" and the functions Cg, Cliq, and C 
are associated with the corresponding dimensional quantities x, y, Cg ,  Ciiq, C' in the following manner  

y =  ( R - h )  yg, y = R - h Y l i q ,  x =  (hPeliq) X' = (RPeg) X", 
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Fig. 1. Hydrodynamic plane X - Y .  
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Cg --~ CoCg (x", yg) , Cli q = kCoCli q (x', Yliq) , C = kCoC (x', Yliq) , 

where k is the distribution coefficient; Co is the constant gas concentration at the inlet to the channel;  Peg = 

RUg/Dg, Peliq ~" hUliq/Oliq are the Peclet numbers; D is the diffusion coefficient; U is the dimensionless velocity 
in phase; the subscripts liq and g relate to the liquid and gas, respectively. As we can see, the distributions of 

concentrations Cg(x', yg), Cliq(X'  , Yliq), and C(x', Yliq) depend generally on three dimensionless parameters: e, fl, 

and a. The first two of these are hydrodynamic parameters (e -- kh-Uliq/RUg, f12 ~ RPeg/hPeliq); they depend on 
the velocities of contacting phases. The third parameter a 2 ~, k h2/Dliq will be called the chemisorption parameter; 

it contains the chemical reaction constant k as a multiplier. In [ l ] it was shown that for the solution to be easily 

represented, it is convenient to select e and eft as independent hydrodynamic variables and consider this solution 

in the plane of the variables X - Y  (X -- log e, Y-- - l o g  eft), which was introduced earlier for investigating a 
two-phase problem of absorption [2 ]. This plane is shown in Fig. I. Generally, the chemisorption parameter at any 

point must take all admissible values 0 < a 2 < oo. 

Main Regularities in the Solution of Eqs. (1)-(3) [1]. The chemical reaction begins to exert its influence 

on mass transfer at distances from the gas apparatus entrance x' - 1/a 2. At rather small values of x', x' << 1 / a  2, 

there is a regime of two-phase physical absorption (I -- Ia~).  If x' >> 1 / a  2, the absorption of A occurs in the 

fast-reaction regime. In the latter case the substance A entering through the interface is mainly consumed in forming 

the product C [3, 4 ]; here the distribution of concentration of the substance A in the liquid phase can be obtained 

analytically: 

Cli q =~ Cg s (x) ch (aYliq)/Ch (a). (4) 

In the fast-reaction regime there is no need to solve general problem (1)-(3), since the dimensionless 

diffusion flux can be found from a simplified single-phase statement: 

OC~ = 02Cg 
2 ' Ug Ox" Oyg (5) 

Oy ]s PgCrs at yg 1; Cg 1 at x" O, 

Pg -- efl2a th(a) is a dimensionless parameter. Problem (5) is a one-parameter problem; it depends only on Pg. Its 

solution for large and small values of Pg was obtained analytically [1 ]: 
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Fig. 2. Numerical calculation of ~og(Zg) for log Pg _< 0 (a) and log Pg >__ 0 (b): 

l) log Pg _< -0 .8;  2) -0 .4;  3) 0; 4) 0.1; 5) 0.2; 6) 0.3; 7) 0.4; 8) 0.5; 9) 0.6; 

10) 0.7; 1 l) ---0.8; I, II, asymptotic Z, 2v~-/~ dependences, respectively; III, 
I ~ Ig(x") transition. 

- L .  ! - o - c -  - > >  
(6) 

Ig o = 1 - exp ( -  P~x') (Pg << I ) ,  (7) 

where err (x) is the error function. A characteristic property of solution (5) is a monotonic change in the surface 
concentration Cgs(x') from unity to zero over a certain region x 0. The order of the magnitude of this region for 

n 

P8 < 1 is x 0 - 1 / P $ >  1 (7); when P g >  1, x 0 - 1 / P $ <  1 (6). At the distances from the entrance x ' > > x  0 the 
resistance to chemisorption is completely controlled by the gas phase, and, consequently, the diffusion flux is 

determined by an analytical dependence obtained by solving the equation of transfer only in the gas phase at the 
zero boundary condition Cs = 0 [5 ]: 

~ 0  2 exp [ -  :r 2 (n + 1/2) 2 x"] 
I g = I = =  1 -  = 2r 2 ( n +  1/2) 2 

(8) 

This is the so-called regime of maximum absorption. 

Numerical Solution for the Fast Chemical Reaction Regime. This solution was obtained by the conventional 
elimination method [2 ]. For the results of calculations to be presented in a practically convenient form, we will 
determine the longitudinal coordinate Zg as a function of Pg as follows (see Eqs. (6) and (7)): 

IPgx ", if Pg < l , 
Zg --- . 2 . (9) 

Pgx  , Pg . if > 1 

Simultaneously, we introduce the dimensionless goal function ~og(Zg), using which and knowing Zg, we can easily 

find the dimensionless diffusion flux Ig and, conversely, determine Zg from the prescribed value of Ig. Generally, 
the goal function is proportional to Ig and coincides with the latter when Pg < l: 

Ilg (Zg), who,  , g _: 1 , (10) 
~Og -- [pg Ig (Zg) , when Pg > l . 

Calculations of the function <pg(Zg) separately for Pg < 1 and Pg > 1 are presented in Fig. 2. As we can 
see, the influence of this parameter on lg is not very great when log Pg < 0 : the maximum difference from the 
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Fig. 3. Numerical calculation of the surface concentration Cgs(Zg) for log 
Pg _< 0 (a) and log Pg > 0 (b): 1) log Pg < -0 .8;  2) -0 .4;  3) 0; 4) 0.2; 5) 
0.4; 6) 0.6; 7) >0.8. 

limiting analytical dependence (7) (curve 1, Fig. 2a) does not exceed 20%. At small enough values of Zg (in 
practice, log Zg _< -0 .8)  Ig(Zg) ~ Zg, whereas at large values of Zg (log Zg >_ 0.6) Ig ~* 1. In the region with 
log Pg > 0, the influence of log Pg on the goal function is usually more pronounced (Fig. 2b). We can easily see 

that the family of one-parameter curves ~Og(PgZg) (the parameter Pg) has analytical dependence (6) as an 
enveloping function (curve 11, Fig. 2b). The asymptotic values of this envelope at small and large values of Zg are 
equal to Zg and 2V~g/~r, respectively (curves I and II, Fig. 2b). At any fixed value of log Zg _ 0 it is sufficient to 

perform numerical calculations of ~og(Zg) only over a limited interval log Zg rain <-- log Zg -< log Zg max. Beyond its 
limits, in the region of log Zg _< log Zg rain, the goal function ~1 ~ Pglg| When log Zg >_ log Zg max (see Eq. 

(8)), Ig-~ I| In the latter case Cgs-* 0. A calculation of Cgs is presented in Fig. 3. As we can see, log 
Pg < 0 should be practically constant (see corresponding solutions for Ig, Fig. 2a). However, when log Pg > O, the 
value of log Zg max increases sharply with an increase in this parameter. When comparing ~g(Zg) with the limiting 

function PgI~(x'), the dependence of log Zg max on log Pg was found parametrically (the dashed straight line in 
Fig. 2b). In the region located to the right of this straight line the approximate equalities Ig -- Ioo(x*) are satisfied 

with an error not exceeding 5%. With an increase in log Jag, the width of the interval [log Zg rain, log Zg max] 
decreases sharply. At log Pg = 0 its maximum value is 0.7 (curve 3, Fig. 2b) and its minimum is zero (curve 11, 
log Pg = 0.8). At rather large values of log Jag >_ 0.8 the goal functions ~Og(Zg) deviate from envelope (6) (curve 1 l,  
Fig. 2b) in the region of log Zg > 1.5, and, consequently, there is no need for numerical calculations at such large 

values of Pg, since at the accuracy adopted (5%) the transition ~og = Pglg~(Zg) occurs at log Zg = 1.5 (see Fig. 2b). 
Together with th, analytical dependence l| (8) the graphs depicted in Fig. 2 allow us to obtain a solution of 

problem (5) at any values of the chemisorption parameter Pg, and, consequently, a solution of general problem 

(1)-(3) at distances from the entrance at which these two solutions coincide. However, one can generally evaluate 
this distance only by solving numerically problem (1)-(3) over the starting length of chemisorption x' N l / a  2. 

Solution of  Problem (1)-(3) Over the Starting Length. In this region the dimensionless longitudinal 

coordinate Z should be introduced in the following manner [3 ]: 

2 , , (11) Z = a x = A2x (A = aft). 

The calculation results will be presented as the chemical reaction acceleration factor ~:  

r (x ,  v, a 2, z )  - ,r (x ,  v, a 2, z )  
*'ab~ (X, Y, Z) " 

For this purpose, along with I we calculate the corresponding dimensionless flux lab s for two-phase physical 
absorption (the solution of problem (1)-(3) at a = 0), which was investigated numerically in [2 ]. It was proved that 

it ~,.~ =afficient to tabuL,,,. "~aos in a limited region of the X - Y  plane (Fig. I), in the so-called absorption square 
ABCD ( - 1  < X < 1, --1 < Y < 1). Outside the confines of this square Iabs coincides with corresponding relations 
for the points located on its boundary. For example, Iabs for point No. l (the X _< - 1, Y _> 1 region) coincides with 

the solution at point A (Fig. 1), 2 ~ B  (X>_ 1, Y>- 1), 3 ~ C  (X>_ 1, Y<_ - 1 ) ,  4 ~ D  (X_< - 1 ,  Y <  --1). 
Similarly, the solution for point No. 5 from the Y _> l region coincides with the corresponding solution at point 5', 
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Fig. 4. Calculation of the acceleration factor at point C of the absorption 
square (X= 1, Y=, -1 ) :  1) logx _< -0.8;  2) -0 .4;  3) 0.4; 4) >0.8. 

Fig. 5. Calculation of the acceleration factor at point A of the absorption 
square (X= - 1 ,  Y= 1): 1) logx > 1.2; 2) 0.8; 3) 0.4; 4) 0; 5) -0 .4 ;  6) --0.8; 
6) -< - 1.2. 

6 == 6' (X > 1), 7 =~ 7' (Y .%< -1 ) ,  8 =~ 8' (X -< -1) .  Evidently, it is also sufficient to tabulate ~ ( Z )  only within the 
absorption square ABCD, since an increase in the rate of mass transfer in the presence of a chemical reaction 
depends only on the concentration distribution in the course of physical absorption. Taking into account the fact 

that ~ ( Z )  =~ 1 when Z =~ 0, we will represent ~ (Z)  at any point of the hydrodynamic plane in the form of 
parametric curves, where the chemisorption parameter should generally cover all values from 0 to oo. Typical 
calculations for two points of the hydrodynamic plane C and A belonging to the boundary of the absorption square 

ABCD are presented in Figs. 4 and 5. As the chemisorption parameter in these figures we selected the following 
values: 1.21 a 2 for point C and 121 a 2 for A. The meaning of the coefficients at a 2 will be explained in what follows. 

It is known that in the first case (point C) the resistance to transfer in two-phase physical absorption is virtually 

concentrated in the gas phase (Cabs = 0). In this ease, the acceleration factor tD(Z) differs insignificantly from unity 
(see Fig. 4). In the second case (point A) Cabs = I, the resistance is concentrated in the liquid phase; consequently, 
�9 (Z) may differ appreciably from unity: its maximum value over the interval log Z < 0.5 is equal to 3 (see Fig. 

5). As seen from Figs. 4 and 5, the factor gg(Z) is bounded from above and below by two limiting dependences. 
As will be shown in what follows, they both have a definite physical meaning. We will consider this problem in 
more detail. 

Earlier [2 ], to investigate two-phase absorption, the notion of an active region of mass exchange Labs was 
introduced (in the coordinates x' and x", /-Jabs and/-labs) as the length over which Iab  s = e/(1 + e). In order of 

magnitude, in the left and right halves of the hydrodynamic plane the following expressions were derived for Labs: 

2 
L a b s - - ( 1 +  e-~) , if X - > O ,  Labs=(1  + efl)2, i f X < O .  (12) 

Moreover, in chemically reacting systems it is customary to introduce the notion of Lchem (L'chem , Lchem) as the 
characteristic length of the reactor beginning from which the chemical interaction in it becomes appreciable [3, 4 ]. 
As applied to the considered first-order chemical reaction in order of magnitude [1 ]: 

L'chem = 1 / a  2 , r hom = 1 / A  2 . (13)  

It is believed that chemical interaction is weak if Labs << Lchera and strong if Lchem << Labs [3, 4 I. In both variants 
the solution of problem (1)-(3) is very much simplified. 

Weak Chemical Interaction. In this case, chemical reaction begins to manifest itself at distances from the 
en t rance  at which in the case of physical  absorpt ion  there  is volumetric  equi l ibr ium in the system: 

~liq 
Cgabs = "-'abs -" 1/(1 + e) [2 1. It is assumed that further the equilibrium is not violated; it is possible to integrate 
transfer equation (1) with respect to the transverse coordinate yg, ~iq in both phases and obtain an ordinary 
differential equation of first order for the concentration Cg(x): 

dx" ~ Cg (x" >> Labs). (14) 
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Fig. 6. Calculation of the acceleration factor tg| in the case of strong chemical 

interaction: 1) Y _< - 1 ;  2) -0 .75 ;  3) - 0 . 5 ;  4) -0 .25 ;  5) 0; 6) 0.25; 7) 0.5; 

8) 0.75; 9) Y-> 1; 10) _>1.25; 11) relation (20). 

Its solution with obvious boundary conditions Cg :~ 1/(1 + e) for x~A 2 * 0 has the form 

- e___L__ + 1 - exp ( -  eZ/(1  + e)) 
I -  1 - C g _  1 + e  1 + e  ' 

where Z ffi x'A 2 is the dimensionless length of the apparatus. 

The  corresponding acceleration factor, designated as D 0, is 

q~o(Z) . e / (1  + e )  I + ~  1 - exp - I V e  " 

T he  function D0(Z) depends only on one hydrodynamic  parameter  e (or X). When e >> I, D0(Z ) =:, 1. Then  the 

gas phase is depleted completely due to physical absorption over the interval x" - L a b  s, and the chemical reaction, 

whose influence begins to manifest itself in the region with x" - 1 /A 2, does not exert  any  effect on the process. As 

e is decreased, the factor D0(Z) is increased, but over any finite interval of length Z the values of this function are 

limited: 

g ) o =  1 + Z ( e * 0 ,  Z<<  l / e ) .  (16) 

Strong Chemical Interaction. In this case at distances from the gas entrance at which the influencc of the 

reaction becomes pronounced, there are diffusion boundary layers at the interface in both phases. Introducing 

dimensionless variables for the transverse coordinates in both phases Ygn, Yliqn by the formulas 

we transform problem (1)-(3): 

Ygn = A ( I  - y g ) ,  Yliqn = a (1  - y n ) ,  

c9C~ = O _ ~  OCli q = O2Cliq 
' 2 - Cliq ' 

cgZ cgY~n cgZ 0Yliq n 

(17) 

OYgn) -- r s 7Y iq~ 
at Ygn = Yliq n = 0 ; 

C g =  1 (Ygn ~ oo); Cli q = 0  (Yliqn ~ oo); (18) 

Cg = I ,  Cli q = 0 at Z = 0 .  

The solution of (17)-(18) depends on one hydrodynamic parameter  eft (or 10. The  corresponding functions 

t/)(Z) (which will be designated as ~ ( Z ) )  also depend only on Y: 
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I _ ~ S  "~ (1 - Cg) dYgn 
= 0 (19)  

cD| ( Y, Z) - labs 2 el6 

v 1+ ep 

Here, we used an analytical dependence for lab s over the starting length of absorption (x << Lab  s )  [2 ]. N,' "nerical 

calculations of the parametric curves @| (the parameter Y) for a number of discrete values of Y are presented 
in Fig. 6. As is seen, an  effect of this parameter on the solution is observed only within a limited interval 

- 1  _< Y <_ I; moreover, as e~ is increased, the acceleration factor is decreased. Beyond this interval <D| is 

virtually independent  of u The explanation of this is as follows. It is known that when Y _< - 1 the resistance to 

mass transfer at the considered distances from the entrance (x << Labs) in physical absorption is governed by the 

gas phase (Cgs << I, l ab  s "- l| (8)) [2 ]. The presence of an irreversible chemical reaction can lead only to a 

decrease in the surface concentration of substance A, which has virtually no effect on the limiting diffusion flux 
I| therefore, @| = 1 (curve 11). In the other limiting case at small enough values of e~ (in practice, u _ I) at 

the considered distances from the entrance the resistance to chemisorption is concentrated in the liquid phase 

(Cgs -- I),  and the film can be assumed to have an infinite thickness. This is the regime of short- term contact of 

phases. For this case Dancwerts [5 ] obtained an analytical formula for the flux of substance A through the phase 

interface. Using this formula and taking into account the fact that at the considered distances i~ab s = 2vf~-f~ -, the 

acceleration factor <D~ can be represented in the following form 

~ |  _- elf (V~)  (Z + I / 2 )  + ~ exp ( -  Z) (20) 

2 

Curve 1 (Fig. 5) virtually coincides with Eq. (20). 

The aforementioned results for weak and strong chemical interactions allow us to approach the problem of 

selection of the chemisorption parameter for the two-phase problem of chemisorption (1)-(3). It will be shown in 

what follows that the use of a 2 as this parameter is not always possible, as it might seem when considering problem 
(1)-(3) formally. In [3 ], the ratio between the characteristic lengths of absorption and chemical reaction was used 

to investigate single-phase chemisorption. This ratio, which will be denoted by x, was adopted in the present work 

as the chemisorption parameter for the two-phase problem. Using Eqs. (12) and (13) for the right (X > 0) and left 

(X < 0) halves of the hydrodynamic plane, it is possible to obtain an explicit expression for x: 

Labs 1 + ,42 when X ~ 0 ,  (21) 

Lchem 
2 

(1 +ef t )  2 a  when X < 0 .  

As follows from the two limiting cases considered above, q~ * q~o when ~ * 0, and q~ * q ~  when ~ * ~.  The 

parameter ~ is proportional to a 2, but it differs from the latter advantageously, because it was obtained on the basis 

of physical considerations and, consequently, it is expected that the boundaries of the interval [A:mi n, Kmax I within 

which the reaction exerts its influence on q~ will depend little on hydrodynamic variables (see the corresponding 

solution for points .4 and C, Figs. 4 and 5). Numerical investigations carried out inside the absorption square showed 

that for the majority of practical calculations it was possible to assume that log ~:min ~ - -  1 ,  log rmax = 1. Beyond 
the interval - 1  <_ log ~ _< 1 the difference between q~ and the corresponding dependences q~o and q~| over the 

region with log Z <_ 0.5 usually does not exceed 5%. We note that the values of r in Figs. 4 and  5 are specific cases 

of Eq. (21). 
The results obtained allow us to ascertain why the quanti ty a 2 could not general ly  be used as the 

chemisorption parameter. In fact, since at any point of the hydrodynamic plane the interval of the effect of log ~ 

is [ - 1 ,  11, then, for example, in the left half of the plane X < 0 (see Eq. (21)) the corresponding interval for log 
2 a is - 1  - (1 + eft) 2 -< log a 2 ~ 1 - (1 + eft) 2. The width of the latter interval, just as for logic, is equal to 2, but 
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the values of log a 2 from this interval in the region of the hydrodynamic plane lying below the horizontal straight 

line CD (Fig. I) can be very small (log a 2 = -~o, if Y ~ -oo),  and, consequently, calculations of tD(Z) are difficult. 

We could observe an analogous situation on the right half of the X -  Y plane (X > 0) for points located above the 
h o r i z o n t a l  l ine  AB if we s e l e c t e d  log A 2 as t he  c h e m i s o r p t i o n  p a r a m e t e r .  In t h i s  c a s e  
- 1  - (I + l/efl) 2 <_ logA 2 < 1 - (1 + 1~eft) 2 and, consequently, when Y *  oo, log A2:~ -oo. 

We will clear up a question about the minimum size of the region Z over which it is necessary to calculate 

the acceleration factor (D(Z). Obviously, the magnitude of this region should be limited, since it is known that  the 

dimensionless diffusion flux 1 = Ig(Z) when Z >> 1 [2 ]. Its specific dimensions can be found only by numerical 

calculations of both fluxes (I, Ig) at the same values of Z. The boundary values Zb at which it is possible to assume 
that I -- lg depend generally on the required accuracy with which the latter equality is satisfied, as well as on the 
magnitude and distribution of the concentration Cabs. As an example, Figs. 4 and 5 present calculations of tD(Z) 

at two extreme points of the absorption square C and A. As is known, in the first case the resistance to mass transfer 

in absorption is virtually concentrated in the gas phase (C abs -- 0.1) [3 ]. The difference between I and I=(x~), Eq. 

(8), is small and the transition I :* Ig (if we confine ourselves to 10% accuracy) occurs at log Z _- -0 .6 .  In the 

second case the resistance in absorption is virtually concentrated in the liquid phase (C abs --- 0.9) [ 3 ], and the 

difference between I and I| is generally large, and, as calculations show, the transition I :~ Ig occurs at log 

Z -- 0.5. The surface concentration ~abs  is a complex function of length, but at any point of the hydrodynamic  v$  

plane this concentration satisfies the inequality 0 < C abs < 1 [3 ]. The latter means that a sufficient condition for 

applicability of fast chemical reaction (5), irrespective of X, Y, and x, is satisfaction of the inequality log Z > 0.5. 

In this case, the error does not exceed 10% anywhere. 
On the basis of the aforementioned investigations we may conclude that considerable acceleration of mass 

transfer due to a first-order chemical reaction in the liquid phase can generally be attained only at large enough 

values of the dimensionless length of the mass exchange apparatus Z. Over the limited region log Z < 0.5 in which 
the maximum value of the acceleration factor (/)max ffi max [q)0(Z), ~ |  the inequality tD < 4 is satisfied at 

any values of the physicochemical parameters (X, Y, x) (see Fig. 5, as well as analytical formulas (15) and (16)). 

The use of the solutions of chemisorbents instead of water at such small acceleration factors is hardly  advisable 

(the well-known difficulties of preparing solutions, corrosion of equipment, etc.). All this means that even though 

the solution at log Z < 0.5 is of a certain theoretical interest (mainly for laboratory investigations), only the regime 

of a fast chemical reaction is of practical value. In this case the procedure for calculation of the dimensionless 

diffusion flux consists in the following: 
1. The dimensionless coordinate Z is calculated, and realization of the inequality log Z > 0.5 is checked. 

2. If log Z < 0.5, the chemisorption parameter Pg and the dimensionless length Zg, Eq. (9), are calculated. 
3. If log Pg lies beyond the interval [ -1 ,  1 ], the dimensionless diffusion flux lg(Zg) is determined from 

analytical formulas (6) or (7), otherwise, using the graphs of Fig. 2, the goal function ~og(Zg) and  then the 

corresponding diffusion flux from Eq. (10) are determined. 

N O T A T I O N  

, r 

C'g, Cliq,  C , concentrations of substance A in gas and liquid and of reaction product C, mole/l i ter;  Co, 

constant concentration of substance A at the entrance, mole/liter; Cg = C'/Co, Cliq = Ciiq/kCo, C = C'/kC O, 
1 

dimensionless concentrations; -Cg = f UgCgdyg, mean dimensionless concentration of A in gas; D, diffusion coefficient, 
0 

m2/sec; h, R, film thickness and channel half-width, m; I = (1 - Cg), dimensionless diffusion flux of substance A; 

k, direct reaction rate constant, l i ter/mole.see;  K, the Henry coefficient; x, y, rectangular system of coordinates, m; 

x' = x/hPeliq, x" = x/RPeg, dimensionless coordinates in the longitudinal direction; yg = y/R,  Yliq = ( R  -- y)/h, 

dimensionless transverse coordinates; U, dimensionless velocity of phase; U, mean velocity of phase, m/sec;  Peg -- 

R - U g / D g ;  Pel iq  = h-Ul iq /Dl iq;  a 2 = k h2/Dliq; A 2 = a2f12; e = h-Uliqk/R-Ug;  r 2  = R P e g / h P e l i q ;  X = l o g  (e) ; Y = - l o g  (ef t ) ,  

189 



dimensionless parameters; Subscripts and superscripts: liq, liquid; g, gas; abs, physical absorption; n, new 
coordinates. 
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